

REACTION OF 2-PICOLINE N-OXIDE WITH BENZOPHENONE
LITHIUM KETYL

A. S. Kurbatova, Yu. V. Kurbatov,
and D. A. Niyazova

UDC 547.821.411.2'829:
542.942.7.9

We have found that 2-picoline N-oxide (I) does not react with benzophenone lithium ketyl in the ring, as in the case of pyridine N-oxide (I), but rather in the side chain with a high degree of selectivity to give only 1,1-diphenyl-2-(2'-pyridyl)ethanol N-oxide (II) in high yield:

The structure of II was confirmed by the PMR data and by deoxidation to give the corresponding pyridine derivative. The reaction may serve as a simple method for the synthesis of physiologically active diaryloxy-substituted oxides of azines.

A suspension of 0.35 g (0.05 mole) of finely cut up lithium in 10 ml of dioxane was added to a solution of 9.1 g (0.005 mole) of benzophenone (III) in 100 ml of absolute dioxane in a nitrogen atmosphere, and the mixture was stirred until the metal had dissolved completely. A solution of 5.45 g (0.05 mole) of oxide I in 50 ml of dioxane was added to the resulting dark-blue solution of the ketyl, and the mixture was stirred until a green coloration appeared. Water was added, and the precipitated 1,1-diphenyl-2-(2'-pyridyl)ethanol N-oxide was separated. The aqueous dioxane solution was extracted with hexane and benzene, and the hexane-dioxane extract was worked up to give 2.8 g (31%) of ketone III. Workup of the benzene extract gave an additional 0.5 g of alcohol II. The overall yield of alcohol II, with mp 214°C (from ethanol), was 67%. PMR spectrum (Varian XL-100, CF₃COOH, hexamethyldisiloxane): 4.3 (s, 2H, CH₂), 6.9-7.1 (m, phenyl protons), 7.5-7.6 (m, 2H, 3-H, 5-H, J_{5,6} = 8.8 and J_{3,6} = 7.4 Hz), 7.9 (t, 1H, 4-H, J_{3,4} = J_{4,5} = 7.0 Hz), and 8.4 ppm (d, 6-H, J_{5,6} = 7.2 Hz). For deoxidation, a 0.5-g sample of alcohol II was refluxed in 7.5 ml of glacial acetic acid for 3 h with 0.1 g of iron powder, and the mixture was worked up in the usual manner to give 1,1-diphenyl-2-(2'-pyridyl)ethanol (70%) with mp 145°C (from ethanol). The results of elementary analysis for the nitrogen content were in agreement with the calculated value.

LITERATURE CITED

1. A. S. Kurbatova, Yu. V. Kurbatov, and D. A. Niyazova, Khim. Geterotsikl. Soedin., No. 5, 655 (1979).

A. Navoi Samarkand State University, Samarkand 703000. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, p. 419, March, 1982. Original article submitted July 15, 1981.